Roman Transient Light Curves

Benjamin Rose, Duke University with special thanks to Maria Vincenzi & Rebekah Hounsell NASA Time Domain and Multi-Messenger Workshop August 22, 2022

What time domain observations are needed in the next 10 years?

What time domain observations will we have in the next 10 years?

The Reference Survey arXiv:2111.03081

- 2 fields likely GOODS-N and Euclid **Deep South**
- 2 tiers
- 4 filters+prism per tier
- 12,000 SNe Ia, 7,000 at z >1

- Wide tier of ~19 deg²
 - Deep tier of ~4 deg²
 - Single Exposures to ~25.5th mag and ~26.5th mag
 - Template coadds to ~28th mag and ~29th mag Deep z=2.02

•	None
	64.98s
	76.28s
	70.62s
	50.85s

- A 5 day cadence
- Likely in Euclid South Deep and/or GOODS-N lacksquare
- Roughly circular filed, rolling ~5 deg/visit
- Photometry: Wide 19 deg², Deep 4 deg²
- Spectroscopy: Wide 3 deg², Deep 1 deg²

- A 5 day cadence
- Likely in Euclid South Deep and/or GOODS-N
- Roughly circular filed, rolling ~5 deg/visit
- Photometry: Wide 19 deg², Deep 4 deg²
- Spectroscopy: Wide 3 deg², Deep 1 deg²

- A 5 day cadence
- Likely in Euclid South Deep and/or GOODS-N
- Roughly circular filed, rolling ~5 deg/visit
- Photometry: Wide 19 deg², Deep 4 deg²
- Spectroscopy: Wide 3 deg², Deep 1 deg²

- A 5 day cadence
- Likely in Euclid South Deep and/or GOODS-N
- Roughly circular filed, rolling ~5 deg/visit
- Photometry: Wide 19 deg², Deep 4 deg²
- Spectroscopy: Wide 3 deg², Deep 1 deg²

- A 5 day cadence
- Likely in Euclid South Deep and/or GOODS-N
- Roughly circular filed, rolling ~5 deg/visit
- Photometry: Wide 19 deg², Deep 4 deg²
- Spectroscopy: Wide 3 deg², Deep 1 deg²

Filters & Depths

- RZYJ (wide), YJHF (deep)
- slitless, multiobject prism

	F062/R	F087/Z	F106/Y	F129/J	F158/H	
Wide Tier						
osure time (sec)	160	100	100	100		
gle-exposure limiting magnitude	26.4	25.6	25.5	25.4		
exposure co-add limiting magnitude	29.0	28.2	28.1	28.0		
Deep Tier						
osure time (sec)			300	300	300	
gle-exposure limiting magnitude			26.7	26.6	26.5	
exposure co-add limiting magnitude			29.3	29.2	29.1	

- Target redshift where mean SN Ia at max get a S/N=10 per exposure.
- 100s minimum

A Forecast of Light Curves!

Simulations Basics

- SNANA for simulations
- PLAsTiCC SEDs (Kessler+ 2019)
 - Most using MOSFiT
- Sims from 0.3 < z < 3.0 (limitation of SNANA and red edge of SEDs)
- Detected is S/N at max > 7

Core-Collapse Supernovae

- 1000 -
- Used the Vincenzi+ 2021
 800 ·
- >25,000 CCSN 600 ·
- ~30 per z=0.1 bin at z>2.5. 400
 - 200
 - 0

CCSN, N=25,619

Core-Collapse Supernovae

Redshift = 0.551

Kilonovae

• Not many & a bad cadence

KN, N=5

Tidal Disruption Events & Super Luminous Supernovae

- Few dozen TDE's to z=1.5
- >50 SLSN to z=3.0
- Lower limit of SLSN because of current z < 3.0 simulation constraint.

Tidal Disruption Events & Super Luminous Supernovae

Still working on . . .

 10^{2}

- Intermediate Luminosity Optical Transients
- ✓ Ca-Rich Transients
- Pair Instability SNe
- AGNs
- Stellar Variables

What time domain observations will Roman provide?

- Over 20,000 CCSN with ~30 per z=0.1 bin at z>2.5.
- A few KN, to z ~ 0.8
- A few dozen TDE to z~1.5
- >50 SLSN to z<3.0

benjamin.rose@duke.edu

Backup slides

Defining a Reference Time Domain Survey

- Choice of fields minimize effects of cosmic variance and coordinate with other surveys and followup instruments.
- Number and area of tiers Effects number of objects as a function of redshift
- Number of filters Need broad wavelength coverage for measuring colors and building templates
- **Cadence** used in discovery and characterization of light curves shape
- **Imaging exposure times** need a sufficient signal-to-noise to reach the 6 mmag precision
- **Prism exposure times** need enough signal-to-noise for redshifts, classification, standardization, systematics and evolution control

Survey Length & Cadence

- 6 months of observing over 2 years \bullet **SN Requirement 2.0.1**
- Target SN Ia over the redshift range of $0.2 \le z \le 1.7$ **SN Requirement 2.0.2**
- So, ~30 hours per every 5 day visit

Rubin 2021 arXiv:2010.15112

2.00

R062

*Z*087

Y106

J129

80

Number of Tiers

Wide & Deep

- Wide tier of ~19 deg²
- Deep tier of ~4 deg²
- These areas may be split over two locations

WFI Hardware

- RZYJ (wide)
- YJHF (deep)
- slitless, multiobject prism

Why?

- Targets rest frame optical
- Prism is ~2 mag more sensitive than G150

Fields

1. High ecliptic latitude (> ± 54)

45°

-45°

30°

15°

0°

-15°

- minimize zodiacal light
- in Roman CVZ (SN 2.3.4)

- 2. High Galactic Latitude (low dust)
- 3. Overlap with other data sets
- 4. Avoid bright stars

Fields

Slewing and Roll angles

- Circular fields can be tiled the same as the observatory rotation angle changes.
- Concentric wide and deep fields Minimize edge effects
- The roll angle:
 - 1. The natural roll of the observatory (~1 deg/ day) or
 - 2. 30 deg jumps to maintain a specific angle for as long as possible.
- Prism will be used like the any other filter, a rolling survey

None 64.98s 76.28s 70.62s 50.85s

Exposure times Two main considerations

- 1. Target redshift where mean SN la at max get a S/N=10 per exposure.
- 2. 100s minimum

			1					1
Mode	Tier	$z_{ m targ}$	Filters	Exp.Time+Overhead No. of Area Tim		Time/Visit	Tot	
				(\mathbf{S})	Pointings	(deg^2)	(hours)	SN
25% Spectroscopy Survey								
Imaging	Wide	1.0	RZYJ	160;100;100;100 + 70x4	68	19.04	14.0	880
Imaging	Deep	1.7	YJHF	300;300;300;900 + 70x4	15	4.20	8.5	352
Subtotal							22.5	1232
Spec	Wide	1.0	prism	900 + 70	12	3.36	3.2	8
Spec	Deep	1.5	prism	3600 + 70	4	$1.12^{>}$	4.1	6
Subtotal							7.3	148

 z_{targ} denotes the redshift where the average SN Ia at peak is observed with S/N=10 per exposure for imaging, and S/N=25 for spectroscopy.

Exposure times

Limiting Magnitude

Exposure tin Single-expos 125-exposure

Exposure tin Single-expos 125-exposure

- ~87% fill fraction
- ~125 observations per static object
- ~19 deg² at ~28th mag
- ~4 deg² at ~29th mag

	F062/R	F087/Z	F106/Y	F129/J	F158/H	F184/F
Wide Tier						
me (sec)	160	100	100	100		
sure limiting magnitude	26.4	25.6	25.5	25.4		
e co-add limiting magnitude	29.0	28.2	28.1	28.0		
Deep Tier						
me (sec)			300	300	300	900
sure limiting magnitude			26.7	26.6	26.5	26.7
e co-add limiting magnitude			29.3	29.2	29.1	29.3

Number of SN la

- 12,000 SNe la
 - And about the same number of CC SNe!
- 7,000 z >1
- Should see 100s of z>2 SN la!
- This gets us the statistics we need for FoM. Now we need to ensure the systematics are constrained enough.

